Skip to main content

🔄 Backend-Controlled, UI-Compatible API Flow

warning

This tutorial is a community contribution and is not supported by the Open WebUI team. It serves only as a demonstration on how to customize Open WebUI for your specific use case. Want to contribute? Check out the contributing tutorial.


Backend-Controlled, UI-Compatible API Flow

This tutorial demonstrates how to implement server-side orchestration of Open WebUI conversations while ensuring that assistant replies appear properly in the frontend UI. This approach requires zero frontend involvement and allows complete backend control over the chat flow. This tutorial has been verified to work with Open WebUI version v0.6.15. Future versions may introduce changes in behavior or API structure.

Prerequisites

Before following this tutorial, ensure you have:

  • A running Open WebUI instance
  • Valid API authentication token
  • Access to the Open WebUI backend APIs
  • Basic understanding of REST APIs and JSON
  • Command-line tools: curl, jq (optional for JSON parsing)

Overview

This tutorial describes a comprehensive 6-step process that enables server-side orchestration of Open WebUI conversations while ensuring that assistant replies appear properly in the frontend UI.

Process Flow

The essential steps are:

  1. Create a new chat with a user message - Initialize the conversation with the user's input
  2. Manually inject an empty assistant message - Create a placeholder for the assistant's response
  3. Trigger the assistant completion - Generate the actual AI response (with optional knowledge integration)
  4. Mark the completion - Signal that the response generation is complete
  5. Poll for response readiness - Wait for the assistant response to be fully generated
  6. Fetch and process the final chat - Retrieve and parse the completed conversation

This enables server-side orchestration while still making replies show up in the frontend UI exactly as if they were generated through normal user interaction.

Implementation Guide

Critical Step: Manually Inject the Assistant Message

The assistant message needs to be injected manually as a critical prerequisite before triggering the completion. This step is essential because the Open WebUI frontend expects assistant messages to exist in a specific structure.

The assistant message must appear in both locations:

  • chat.messages[] - The main message array
  • chat.history.messages[<assistantId>] - The indexed message history

Expected structure of the assistant message:

{
"id": "<uuid>",
"role": "assistant",
"content": "",
"parentId": "<user-msg-id>",
"modelName": "gpt-4o",
"modelIdx": 0,
"timestamp": <currentTimestamp>
}

Without this manual injection, the assistant's response will not appear in the frontend interface, even if the completion is successful.

Step-by-Step Implementation

Step 1: Create Chat with User Message

This starts the chat and returns a chatId that will be used in subsequent requests.

curl -X POST https://<host>/api/v1/chats/new \
-H "Authorization: Bearer <token>" \
-H "Content-Type: application/json" \
-d '{
"chat": {
"title": "New Chat",
"models": ["gpt-4o"],
"messages": [
{
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
}
],
"history": {
"current_id": "user-msg-id",
"messages": {
"user-msg-id": {
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
}
}
}
}
}'

Step 2: Manually Inject Empty Assistant Message

Add the assistant message placeholder to the chat structure:

curl -X POST https://<host>/api/v1/chats/<chatId>/messages \
-H "Authorization: Bearer <token>" \
-H "Content-Type: application/json" \
-d '{
"id": "assistant-msg-id",
"role": "assistant",
"content": "",
"parentId": "user-msg-id",
"modelName": "gpt-4o",
"modelIdx": 0,
"timestamp": 1720000001000
}'

Step 3: Trigger Assistant Completion

Generate the actual AI response using the completion endpoint:

curl -X POST https://<host>/api/chat/completions \
-H "Authorization: Bearer <token>" \
-H "Content-Type: application/json" \
-d '{
"chat_id": "<chatId>",
"id": "assistant-msg-id",
"messages": [
{
"role": "user",
"content": "Hi, what is the capital of France?"
}
],
"model": "gpt-4o",
"stream": true,
"background_tasks": {
"title_generation": true,
"tags_generation": false,
"follow_up_generation": false
},
"features": {
"code_interpreter": false,
"web_search": false,
"image_generation": false,
"memory": false
},
"variables": {
"{{USER_NAME}}": "",
"{{USER_LANGUAGE}}": "en-US",
"{{CURRENT_DATETIME}}": "2025-07-14T12:00:00Z",
"{{CURRENT_TIMEZONE}}": "Europe"
},
"session_id": "session-id"
}'

Step 3.1: Trigger Assistant Completion with Knowledge Integration (RAG)

For advanced use cases involving knowledge bases or document collections, include knowledge files in the completion request:

curl -X POST https://<host>/api/chat/completions \
-H "Authorization: Bearer <token>" \
-H "Content-Type: application/json" \
-d '{
"chat_id": "<chatId>",
"id": "assistant-msg-id",
"messages": [
{
"role": "user",
"content": "Hi, what is the capital of France?"
}
],
"model": "gpt-4o",
"stream": true,
"files": [
{
"id": "knowledge-collection-id",
"type": "collection",
"status": "processed"
}
],
"background_tasks": {
"title_generation": true,
"tags_generation": false,
"follow_up_generation": false
},
"features": {
"code_interpreter": false,
"web_search": false,
"image_generation": false,
"memory": false
},
"variables": {
"{{USER_NAME}}": "",
"{{USER_LANGUAGE}}": "en-US",
"{{CURRENT_DATETIME}}": "2025-07-14T12:00:00Z",
"{{CURRENT_TIMEZONE}}": "Europe"
},
"session_id": "session-id"
}'

Step 4: Mark Completion

Signal that the assistant response is complete:

curl -X POST https://<host>/api/chat/completed \
-H "Authorization: Bearer <token>" \
-H "Content-Type: application/json" \
-d '{
"chat_id": "<chatId>",
"id": "assistant-msg-id",
"session_id": "session-id",
"model": "gpt-4o"
}'

Step 5: Poll for Assistant Response Completion

Since assistant responses are generated asynchronously, poll the chat endpoint until the response is ready:

# Poll every few seconds until assistant content is populated
while true; do
response=$(curl -s -X GET https://<host>/api/v1/chats/<chatId> \
-H "Authorization: Bearer <token>")

# Check if assistant message has content (response is ready)
if echo "$response" | jq '.chat.messages[] | select(.role=="assistant" and .id=="assistant-msg-id") | .content' | grep -v '""' > /dev/null; then
echo "Assistant response is ready!"
break
fi

echo "Waiting for assistant response..."
sleep 2
done

Step 6: Fetch Final Chat

Retrieve the completed conversation:

curl -X GET https://<host>/api/v1/chats/<chatId> \
-H "Authorization: Bearer <token>"

Additional API Endpoints

Fetch Knowledge Collection

Retrieve knowledge base information for RAG integration:

curl -X GET https://<host>/api/v1/knowledge/<knowledge-id> \
-H "Authorization: Bearer <token>"

Fetch Model Information

Get details about a specific model:

curl -X GET https://<host>/api/v1/models/model?id=<model-name> \
-H "Authorization: Bearer <token>"

Response Processing

Parsing Assistant Responses

Assistant responses may be wrapped in markdown code blocks. Here's how to clean them:

# Example raw response from assistant
raw_response='```json
{
"result": "The capital of France is Paris.",
"confidence": 0.99
}
```'

# Clean the response (remove markdown wrappers)
cleaned_response=$(echo "$raw_response" | sed 's/^```json//' | sed 's/```$//' | sed 's/^[[:space:]]*//' | sed 's/[[:space:]]*$//')

echo "$cleaned_response" | jq '.'

This cleaning process handles:

  • Removal of ````json` prefix
  • Removal of ```` suffix
  • Trimming whitespace
  • JSON validation

API Reference

DTO Structures

Chat DTO (Complete Structure)

{
"id": "chat-uuid-12345",
"title": "New Chat",
"models": ["gpt-4o"],
"files": [],
"tags": [
{
"id": "tag-id",
"name": "important",
"color": "#FF5733"
}
],
"params": {
"temperature": 0.7,
"max_tokens": 1000
},
"timestamp": 1720000000000,
"messages": [
{
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
},
{
"id": "assistant-msg-id",
"role": "assistant",
"content": "",
"parentId": "user-msg-id",
"modelName": "gpt-4o",
"modelIdx": 0,
"timestamp": 1720000001000
}
],
"history": {
"current_id": "assistant-msg-id",
"messages": {
"user-msg-id": {
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
},
"assistant-msg-id": {
"id": "assistant-msg-id",
"role": "assistant",
"content": "",
"parentId": "user-msg-id",
"modelName": "gpt-4o",
"modelIdx": 0,
"timestamp": 1720000001000
}
}
},
"currentId": "assistant-msg-id"
}

ChatCompletionsRequest DTO

{
"chat_id": "chat-uuid-12345",
"id": "assistant-msg-id",
"messages": [
{
"role": "user",
"content": "Hi, what is the capital of France?"
}
],
"model": "gpt-4o",
"stream": true,
"background_tasks": {
"title_generation": true,
"tags_generation": false,
"follow_up_generation": false
},
"features": {
"code_interpreter": false,
"web_search": false,
"image_generation": false,
"memory": false
},
"variables": {
"{{USER_NAME}}": "",
"{{USER_LANGUAGE}}": "en-US",
"{{CURRENT_DATETIME}}": "2025-07-14T12:00:00Z",
"{{CURRENT_TIMEZONE}}": "Europe"
},
"session_id": "session-uuid-67890",
"filter_ids": [],
"files": [
{
"id": "knowledge-collection-id",
"type": "collection",
"status": "processed"
}
]
}

ChatCompletedRequest DTO

{
"model": "gpt-4o",
"chat_id": "chat-uuid-12345",
"id": "assistant-msg-id",
"session_id": "session-uuid-67890",
"messages": [
{
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
},
{
"id": "assistant-msg-id",
"role": "assistant",
"content": "The capital of France is Paris.",
"parentId": "user-msg-id",
"modelName": "gpt-4o",
"modelIdx": 0,
"timestamp": 1720000001000
}
]
}

ChatCompletionMessage DTO

{
"role": "user",
"content": "Hi, what is the capital of France?"
}

History DTO

{
"current_id": "assistant-msg-id",
"messages": {
"user-msg-id": {
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
},
"assistant-msg-id": {
"id": "assistant-msg-id",
"role": "assistant",
"content": "The capital of France is Paris.",
"parentId": "user-msg-id",
"modelName": "gpt-4o",
"modelIdx": 0,
"timestamp": 1720000001000
}
}
}

Message DTO (Complete Structure)

{
"id": "msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
}
{
"id": "assistant-msg-id",
"role": "assistant",
"content": "The capital of France is Paris.",
"parentId": "user-msg-id",
"modelName": "gpt-4o",
"modelIdx": 0,
"timestamp": 1720000001000
}

Response Examples

Create Chat Response

{
"success": true,
"chat": {
"id": "chat-uuid-12345",
"title": "New Chat",
"models": ["gpt-4o"],
"files": [],
"tags": [],
"params": {},
"timestamp": 1720000000000,
"messages": [
{
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
}
],
"history": {
"current_id": "user-msg-id",
"messages": {
"user-msg-id": {
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
}
}
},
"currentId": "user-msg-id"
}
}

Final Chat Response (After Completion)

{
"id": "chat-uuid-12345",
"title": "Capital of France Discussion",
"models": ["gpt-4o"],
"files": [],
"tags": [
{
"id": "auto-tag-1",
"name": "geography",
"color": "#4CAF50"
}
],
"params": {},
"timestamp": 1720000000000,
"messages": [
{
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
},
{
"id": "assistant-msg-id",
"role": "assistant",
"content": "The capital of France is Paris. Paris is not only the capital but also the most populous city in France, known for its iconic landmarks such as the Eiffel Tower, the Louvre Museum, and Notre-Dame Cathedral.",
"parentId": "user-msg-id",
"modelName": "gpt-4o",
"modelIdx": 0,
"timestamp": 1720000001000
}
],
"history": {
"current_id": "assistant-msg-id",
"messages": {
"user-msg-id": {
"id": "user-msg-id",
"role": "user",
"content": "Hi, what is the capital of France?",
"timestamp": 1720000000000,
"models": ["gpt-4o"]
},
"assistant-msg-id": {
"id": "assistant-msg-id",
"role": "assistant",
"content": "The capital of France is Paris. Paris is not only the capital but also the most populous city in France, known for its iconic landmarks such as the Eiffel Tower, the Louvre Museum, and Notre-Dame Cathedral.",
"parentId": "user-msg-id",
"modelName": "gpt-4o",
"modelIdx": 0,
"timestamp": 1720000001000
}
}
},
"currentId": "assistant-msg-id"
}

Tag DTO

{
"id": "tag-uuid-123",
"name": "geography",
"color": "#4CAF50"
}

OWUIKnowledge DTO (Knowledge Collection)

{
"id": "knowledge-collection-id",
"type": "collection",
"status": "processed",
"name": "Geography Knowledge Base",
"description": "Contains information about world geography and capitals",
"created_at": 1720000000000,
"updated_at": 1720000001000
}

Knowledge Collection Response

{
"id": "knowledge-collection-id",
"name": "Geography Knowledge Base",
"description": "Contains information about world geography and capitals",
"type": "collection",
"status": "processed",
"files_count": 15,
"total_size": 2048576,
"created_at": 1720000000000,
"updated_at": 1720000001000,
"metadata": {
"indexing_status": "complete",
"last_indexed": 1720000001000
}
}

Model Information Response

{
"id": "gpt-4o",
"name": "GPT-4 Optimized",
"model": "gpt-4o",
"base_model_id": "gpt-4o",
"meta": {
"description": "Most advanced GPT-4 model optimized for performance",
"capabilities": ["text", "vision", "function_calling"],
"context_length": 128000,
"max_output_tokens": 4096
},
"params": {
"temperature": 0.7,
"top_p": 1.0,
"frequency_penalty": 0.0,
"presence_penalty": 0.0
},
"created_at": 1720000000000,
"updated_at": 1720000001000
}

Field Reference Guide

Required vs Optional Fields

Chat Creation - Required Fields:

  • title - Chat title (string)
  • models - Array of model names (string[])
  • messages - Initial message array

Chat Creation - Optional Fields:

  • files - Knowledge files for RAG (defaults to empty array)
  • tags - Chat tags (defaults to empty array)
  • params - Model parameters (defaults to empty object)

Message Structure - User Message:

  • Required: id, role, content, timestamp, models
  • Optional: parentId (for threading)

Message Structure - Assistant Message:

  • Required: id, role, content, parentId, modelName, modelIdx, timestamp
  • Optional: Additional metadata fields

ChatCompletionsRequest - Required Fields:

  • chat_id - Target chat ID
  • id - Assistant message ID
  • messages - Array of ChatCompletionMessage
  • model - Model identifier
  • session_id - Session identifier

ChatCompletionsRequest - Optional Fields:

  • stream - Enable streaming (defaults to false)
  • background_tasks - Control automatic tasks
  • features - Enable/disable features
  • variables - Template variables
  • filter_ids - Pipeline filters
  • files - Knowledge collections for RAG

Field Constraints

Timestamps:

  • Format: Unix timestamp in milliseconds
  • Example: 1720000000000 (July 4, 2024, 00:00:00 UTC)

UUIDs:

  • All ID fields should use valid UUID format
  • Example: 550e8400-e29b-41d4-a716-446655440000

Model Names:

  • Must match available models in your Open WebUI instance
  • Common examples: gpt-4o, gpt-3.5-turbo, claude-3-sonnet

Session IDs:

  • Can be any unique string identifier
  • Recommendation: Use UUID format for consistency

Knowledge File Status:

  • Valid values: "processed", "processing", "error"
  • Only use "processed" files for completions

Important Notes

  • This workflow is compatible with Open WebUI + backend orchestration scenarios
  • Critical: Avoid skipping the assistant injection step — otherwise the frontend won't display the message
  • No frontend code changes are required for this approach
  • The stream: true parameter allows for real-time response streaming if needed
  • Background tasks like title generation can be controlled via the background_tasks object
  • Session IDs help maintain conversation context across requests
  • Knowledge Integration: Use the files array to include knowledge collections for RAG capabilities
  • Polling Strategy: Always poll for completion rather than assuming immediate response availability
  • Response Parsing: Handle JSON responses that may be wrapped in markdown code blocks
  • Error Handling: Implement proper retry mechanisms for network timeouts and server errors

Summary

Use the Open WebUI backend APIs to:

  1. Start a chat - Create the initial conversation with user input
  2. Inject an assistant placeholder message - Prepare the response container
  3. Trigger a reply - Generate the AI response (with optional knowledge integration)
  4. Poll for completion - Wait for the assistant response to be ready
  5. Finalize the conversation - Mark completion and retrieve the final chat
  6. Process the response - Parse and clean the assistant's output

Enhanced Capabilities:

  • RAG Integration - Include knowledge collections for context-aware responses
  • Asynchronous Processing - Handle long-running AI operations with polling
  • Response Parsing - Clean and validate JSON responses from the assistant
  • Session Management - Maintain conversation context across requests

This enables backend-controlled workflows that still appear properly in the Web UI frontend chat interface, providing seamless integration between programmatic control and user experience.

The key advantage of this approach is that it maintains full compatibility with the Open WebUI frontend while allowing complete backend orchestration of the conversation flow, including advanced features like knowledge integration and asynchronous response handling.

Testing

You can test your implementation by following the step-by-step CURL examples provided above. Make sure to replace placeholder values with your actual:

  • Host URL
  • Authentication token
  • Chat IDs
  • Message IDs
  • Model names
tip

Start with a simple user message and gradually add complexity like knowledge integration and advanced features once the basic flow is working.